blob: 0e6e259bfe64eeaa88e64b504853e2f9b8965e1c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
import numpy as np
from sklearn_extra.cluster import KMedoids
from sklearn.svm import OneClassSVM
def featureSelection(x):
return np.percentile(x, np.arange(10,100,10))
def MyFunc(t_end):
print (t_end)
kmedoids = KMedoids (n_clusters = 2, random_state = 0).fit(t_end)
result = kmedoids.labels_
print(result)
return result
def SVM(X):
clf = OneClassSVM(kernel = 'rbf', gamma=0.01, nu=0.4).fit(X)
print(clf.predict(X))
|