import numpy as np from sklearn_extra.cluster import KMedoids from sklearn.svm import OneClassSVM def featureSelection(x): return np.percentile(x, np.arange(10,100,10)) def MyFunc(t_end): print (t_end) kmedoids = KMedoids (n_clusters = 2, random_state = 0).fit(t_end) result = kmedoids.labels_ print(result) return result def SVM(X): clf = OneClassSVM(kernel = 'rbf', gamma=0.01, nu=0.4).fit(X) print(clf.predict(X))